Total synthesis of the putative structure of the marine alkaloid haliclorensin

Martin G. Banwell,*a Andrew M. Bray,b Alison J. Edwardsa and David J. Wonga

^a Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia. E-mail: mgb@rsc.anu.edu.au

^b Mimotopes Pty Ltd, 11 Duerdin Street, Clayton South, Melbourne, Victoria 3169, Australia

Received (in Montpellier, France) 8th June 2001, Accepted 21st August 2001 First published as an Advance Article on the web 9th October 2001

Compound 1, the structure of which has been assigned to the marine natural product haliclorensin, was prepared by an unambiguous synthetic pathway and subjected to spectroscopic analysis. The derived data do not match those reported for the natural product.

The natural products haliclorensin¹ and halitulin² were isolated by Kashman and co-workers from the marine sponge Haliclona tulearensis, collected in Sodwana Bay, Durban, South Africa. The structures of these compounds were assigned as 1 and 2, respectively, using a combination of spectroscopic studies and biosynthetic considerations. The absolute stereochemistry associated with the single stereogenic centre incorporated in these structures was not assigned. While no significant biological activity has been ascribed to haliclorensin, halitulin was found to be cytotoxic against several tumour cell lines (e.g., P-388, A-549, HT-29 and MEL-28) with IC₅₀ values in the 12-25 ng ml⁻¹ range. Such properties, coupled with the novel structure assigned to halitulin, prompted a patent filing³ (jointly with PharmaMar S. A., Madrid) claiming 3,4-bis(7,8-dihydroxyquinolin-5-yl)pyrroles as antitumour agents.

Our continued interest in developing total syntheses of biologically active, pyrrole-containing marine natural products⁴⁻⁶ prompted us to undertake the preparation of the racemic modification of compound 1 as a prelude to the assembly of the structurally more challenging congener 2. Herein, we detail the synthesis of target 1 by unambiguous

Letter

means and report that it does not correspond to the natural product haliclorensin. 7

The synthesis of compound 1 is shown in Scheme 1. The key step involves a ring-closing metathesis (RCM) step for construction of the azacyclodecane ring,⁸ a protocol that has been applied to the preparation of a number of other prominent and structurally related marine alkaloids, including manzamine C.⁹ Thus, condensation of the commercially available acid 3 with benzylamine using DMTMM¹⁰ afforded amide 4 (100%), which was reduced to the N-benzylamine 5 (100%) with lithium aluminium hydride. DMTMM-mediated condensation of the latter compound with 5-hexenoic acid then gave the doubly unsaturated amide 6 (40%), which was obtained as a ca. 1:1 and chromatographically distinguishable mixture of rotamers. In keeping with the studies of Weiler et al.,¹¹ compound 6 participated in a RCM reaction when treated with 15 mol% of (Cy₃P)₂Cl₂Ru=CHPh (Grubbs'

Scheme 1 Reagents and conditions: (i) benzylamine (1.2 mol equiv.), DMTMM (1 mol equiv.), THF, 18 °C, 16 h; (ii) LiAlH₄ (2 mol equiv.), THF, 0–18 °C, 16 h; (iii) 5-hexenoic acid (1 mol equiv.), DMTMM (1.5 mol equiv.), THF, 18 °C, 16 h; (iv) $(Cy_3P)_2Cl_2Ru=CHPh$ (ca. 15 mol%), CH_2Cl_2 , reflux, 48 h; (v) CH_2Cl_2 , 12 mol equiv.), CH_2Cl_2 , reflux, 48 h; (v) CH_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CH_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CH_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CCL_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CCL_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CCL_2Cl_2 , 18 °C, 24 h; (viii) acrylonitrile (excess), AcOH (2 mol equiv.), CCL_2Cl_2 , CCL_2Cl_2 , C

DOI: 10.1039/b105045c New J. Chem., 2001, **25**, 1347–1350 **1347**

catalyst)¹² in refluxing dichloromethane, although it was clear that one rotameric form reacted more rapidly than the other in this process. The resulting *ca.* 3:1 mixture of *E*- and *Z*-alkenes (76%) was immediately subjected to hydrogenation with dihydrogen in the presence of 10% palladium on carbon and, in this manner, the corresponding saturated lactam 7 (100%) was obtained and the structure determined by single-crystal X-ray analysis (Fig. 1 and Experimental).

Lithium aluminum hydride-promoted reduction of the latter compound then afforded the N-benzylated amine 8 (100%), which was reacted with hydrogen in the presence of 20% Pd(OH)₂ on carbon to give 3-methylazadodecane (9). This latter compound was not characterized but immediately subjected to treatment with excess acrylonitrile in the presence of acetic acid and, in this manner, the expected Michael addition product 10 (36% from 8) was obtained. Treatment of compound 10 with sodium borohydride in the presence of cobalt(II) chloride hexahydrate¹³ then gave the target diamine 1 in 90% yield. NMR spectroscopic and mass spectrometric analysis of this material gave data completely consistent with structure 1 but these did not match those reported1 for the natural product (Table 1 and Experimental). Our data do, however, match those reported⁷ by Heinrich and Steglich for their synthetically-derived samples of compound 1.

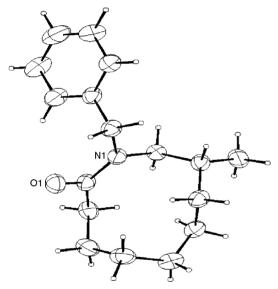


Fig. 1 Diagram derived from single-crystal X-ray analysis of compound 7.

Table 1 Comparison of ¹³C NMR spectral data derived from compound 1 with those reported 1 for haliclorensin^a

Carbon no.	Compound 1 (at 125 MHz)	Haliclorensin	Calc.b
2	60.3(CH ₂)	48.5(t)	61.1
3	29.4(CH)	26.5(d)	31.7
4	31.6(CH ₂)	30.3(t)	34.7
5	21.7(CH ₂)	22.6(t)	27.5
6	26.1(CH ₂)	24.3(t)	30.6
7	24.2(CH ₂)	24.1(t)	30.0
8	24.0(CH ₂)	22.3(t)	28.0
9	25.4(CH ₂)	21.5(t)	30.0
10	52.8(CH ₂)	42.4(t)	54.5
11	19.4(CH ₃)	17.7(q)	17.8
1'	52.4(CH ₂)	41.3(t)	51.6
2'	$30.0(CH_2)$	19.2(t)	34.1
3′	40.3(CH ₂)	41.2(t)	40.0

^a Both spectra recorded in DMSO-d₆. ^b Generated using the NMR chemical shift calculation package associated with ChemDraw Ultra[™] 6.0 (PC Version).

On the basis of the foregoing, we conclude that the structure for haliclorensin has been incorrectly assigned. These observations also call into question the structure assigned to halitulin. Synthetic and spectroscopic studies designed to establish the structures of haliclorensin and halitulin are now underway in our laboratories and results will be reported in due course.

Experimental

Unless otherwise specified, ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 300 spectrometer using deuterochloroform as solvent. The 500 MHz ¹H NMR spectra and the 150 MHz ¹³C NMR spectrum were obtained on the corresponding Varian Inova spectrometers. Infrared spectra were recorded on either a Perkin–Elmer 683 or 1800 FTIR instrument. Unless otherwise specified, mass spectral analyses were carried out in electron-impact mode and on a VG Micromass 7070F double-focussing spectrometer. Thin layer chromatographic analyses were carried out on aluminium-backed 0.2 mm thick silica gel 60 GF₂₅₄ plates supplied by Merck while flash chromatographic purifications were conducted according to the method of Still *et al.*¹⁴ and using Merck silica gel 60 (230–400 mesh) as adsorbent. All solvents and common reagents were purified by established procedures.¹⁵

Syntheses

(±)-2-Methylpent-4-enoic acid benzylamide (4). DMTMM (9.09 g, 32.96 mmol) was added in portions to a magnetically stirred solution of benzylamine (2.94 g, 27.46 mmol) and 2methylpent-4-enoic acid (3.14 g, 27.46 mmol) in THF (125 ml) maintained at 0°C under a nitrogen atmosphere. The resulting mixture was allowed to warm to 18 °C over ca. 1 h, stirred at this temperature for a further 15 h, then poured into water (150 ml) and extracted with diethyl ether (3 \times 200 ml). The combined ethereal extracts were washed with HCl $(2 \times 400 \text{ ml of a 2 M aq. solution})$, NaHCO₃ $(2 \times 400 \text{ ml of a})$ saturated aq. solution) and brine (1 × 400 ml) before being dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford a dark yellow oil. Subjection of this material to flash chromatography (silica gel, 2: 3 v/v ethyl acetate-hexane elution) and concentration of the appropriate fractions ($R_{\rm f}$ 0.6) afforded amide 4¹⁶ (4.95 g, 89%) as a pale yellow oil. HRMS: m/z 203.1316 (M⁺⁺); C₁₃H₁₇NO requires 203.1310; ν_{max} 3286, 3076, 3030, 2971, 2931, 1643, 1548, 1454, 1250, 993, 914, 730, 697 cm⁻¹; $\delta_{\rm H}$ 7.34–7.26 (m, 5H), 5.83–5.69 (complex m, 2H), 5.11-5.01 (complex m, 2H), 4.48 (dd, J 14.7 and 5.6 Hz, 1H), 4.42 (dd, J 14.7 and 5.6 Hz, 1H), 2.44 (m, 1H), 2.25 (m, 1H), 2.18 (m, 1H), 1.18 (d, J 6.2 Hz, 3H); $\delta_{\rm C}$ 175.8 (CO), 138.4 (C), 135.7 (CH), 128.3 (2 × CH), 127.4 (2 × CH), 127.1 (CH), 116.5 (CH₂), 43.0 (CH₂), 40.7 (CH), 38.2 (CH₂), 17.2 (CH₃); m/z 203 $(M^{+}, 47\%)$, 188 $[(M - CH_3)^+, 22]$, 162 $[(M - C_3H_5)^+, 33]$, 91 (100).

(\pm)-Benzyl(2'-methylpent-4'-enyl)amine (5). Lithium aluminium hydride (13.7 ml of a 1.0 M solution in THF, 13.7 mmol) was added, dropwise, to a magnetically stirred solution of amide 4 (1.39 g, 6.86 mmol) in THF (50 ml) maintained at 0 °C under a nitrogen atmosphere. The resulting mixture was allowed to warm to 18 °C over ca. 1 h, stirred at this temperature for a further 15 h then quenched with ethyl acetate (20 mL). The resulting mixture was treated with sodium hydroxide (20 ml of a 2 M aq. solution) and the ensuing precipitate filtered through CeliteTM. The filtrate was treated with water (100 ml) and ethyl acetate (100 ml) and the separated aqueous phase extracted with ethyl acetate (3 × 100 ml). The combined organic extracts were then dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford the title amine 5^{17} (1.33 g, 99%) as a pale yellow oil. HRMS: m/z

174.1283 (M – CH₃)⁺; C₁₂H₁₆N requires 174.1283; $\nu_{\rm max}$ 3063, 3026, 2954, 2905, 2813, 1639, 1494, 1453, 1118, 993, 910, 734, 697 cm⁻¹; $\delta_{\rm H}$ 7.33–7.21 (complex m, 5H), 5.78 (m, 1H), 5.05–4.96 (complex m, 2H), 3.78 (s, 2H), 2.56 (dd, J 11.6 and 6.3 Hz, 1H), 2.43 (dd, J 11.6 and 6.9 Hz, 1H), 2.16 (m, 1H), 1.91 (m, 1H), 1.73 (m, 1H), 1.37 (br s, 1H), 0.91 (d, J 6.7 Hz, 3H); $\delta_{\rm C}$ 140.5 (C), 137.0 (CH), 128.1 (2 × CH), 127.8 (2 × CH), 126.6 (CH), 115.7 (CH₂), 55.2 (CH₂), 53.9 (CH₂), 39.2 (CH₂), 33.0 (CH), 17.8 (CH₃); m/z 189 (M⁺⁺, 58%), 188 [(M – H)⁺, 67], 174 [(M – CH₃)⁺, 22], 120 [(M – C₅H₉)⁺, 92], 91 (100). This material was used without further purification in the next step of the reaction sequence.

(±)-Hex-5-enoic acid benzyl(2'-methylpent-4'-enyl)amide (6). DMTMM (2.77 g, 10.02 mmol) was added, in portions, to a magnetically stirred solution of amine 5 (1.26 g, 6.68 mmol) and 5-hexenoic acid (0.76 g, 6.68 mmol) in THF (60 ml) maintained at 0°C under a nitrogen atmosphere. The reaction mixture was allowed to warm to 18 °C over ca. 1 h, stirred at this temperature for a further 15 h then poured into water (60 ml) and extracted with diethyl ether (3 × 100 ml). The combined ethereal extracts were washed with HCl (2 × 200 ml of a 2 M aq. solution), NaHCO₃ (2 × 200 ml of a saturated aq. solution) and brine (1 × 200 ml), then dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford a dark yellow oil. Subjection of this material to flash chromatography (silica gel, 1: 4 v/v ethyl acetate-hexane elution) and concentration of the appropriate fractions $(R_f 0.4)$ afforded amide 6 (800 mg, 42%) as a pale yellow oil and a ca. 1:1 mixture of rotamers (as judged by 13 C NMR analysis). HRMS: m/z 285.2093 (M $^{+}$); $C_{19}H_{27}NO$ requires 285.2093; v_{max} 2957, 2925, 1642, 1451, 1421, 911, 698 cm⁻¹; δ_{H} 7.38–7.12 (complex m, 5H), 5.82-5.67 (complex m, 2H), 5.06-4.91 (complex m, 4H), 4.71-4.54 (complex m, 2H), 3.56-2.94 (complex m, 2H), 2.35 (dt, J 19.3 and 7.5 Hz, 2H), 2.18-2.00 (complex m, 3H), 2.00-1.70 (m, 4H), 0.89 (apparent t, J 6 Hz, 3H); $\delta_{\rm C}$ 173.5 (C), 173.2 (C), 138.0 (CH), 137.7 (C), 137.0 (C), 136.6 (CH), 135.8 (CH), 128.8 (2 × CH), 128.4 (2 × CH), 127.8 (2 × CH), 127.3 (CH), 127.1 (CH), 126.0 (2 × CH), 116.8 (CH₂), 116.1 (CH₂), 115.1 (CH₂), 115.0 (CH₂), 52.3 (CH₂), 51.6 (CH₂), 51.5 (CH₂), 48.3 (CH₂), 38.8 (CH₂), 38.6 (CH₂), 33.2 (CH₂), 33.1 (CH₂), 32.4 (CH₂), 32.3 (CH₂), 32.1 (CH), 31.5 (CH), 24.9 (CH₂), 17.2(9) (CH₃), 17.2(6) (CH₃) (one signal due to CH and one due to CH_2 carbon are overlapping or obscured); m/z 285 (M⁺, 26%), 244 [(M - C_3H_5)⁺, 26], 216 (27), 188 (28), 120 (100), 91 (94).

(\pm)-1-Benzyl-9-methylazacyclodecan-2-one (7). A solution of Grubbs' catalyst [(Cy₃P)₂Cl₂Ru=CHPh] (205 mg, 0.25 mmol) in CH₂Cl₂ (5 ml) was added dropwise (in two aliquots over 24 h) to a magnetically stirred solution of diene 6 (475 mg, 1.66 mmol) in CH₂Cl₂ (600 ml) maintained under a nitrogen atmosphere at 18 °C. The resulting mixture was heated at reflux for 48 h, then cooled and concentrated under reduced pressure to give a light orange oil. This material was subjected to flash chromatography (silica gel, 1:5 v/v ethyl acetate-hexane elution) and concentration of the appropriate fractions (R_f 0.3) gave an inseparable and ca. 3:1 mixture (as judged by NMR analysis) of the E and E isomers of the expected unsaturated lactam (325 mg, 76%) as a pale yellow oil. This material was used immediately in the next step of the reaction sequence.

A magnetically solution of the above-mentioned lactam (325 mg, 1.26 mmol) in methanol (20 ml) containing 10% Pd on C (160 mg) was maintained under a hydrogen atmosphere at 18 °C for 24 h. The resulting mixture was filtered through a short pad of CeliteTM which was washed with methanol (150 ml). The combined filtrates were concentrated under reduced

pressure to afford a light yellow oil. Subjection of this material to flash chromatography (silica gel, 1 : 5 v/v ethyl acetate-hexane elution) and concentration of the appropriate fractions ($R_{\rm f}$ 0.5) gave the saturated lactam 7 (325 mg, 99%) as crystalline masses, m.p. 46–49 °C. HRMS: m/z 259.1934 (M^{*+}); $C_{17}H_{25}NO$ requires 259.1936; $v_{\rm max}$ 2930, 1632, 1450, 1144, 740, 700 cm⁻¹; $\delta_{\rm H}$ 7.30–7.10 (complex m, 5H), 5.37 (br d, J 14.2 Hz, 1H), 3.80 (br d, J 14.2 Hz, 1H), 3.40 (t, J 13.5 Hz, 1H), 2.90 (m, 2H), 2.20–1.96 (complex m, 3H), 1.60–1.10 (complex m, 9H), 0.76 (d, J 6.9 Hz, 3H); $\delta_{\rm C}$ 173.9 (C), 137.6 (C), 128.4 (2 × CH), 128.2 (2 × CH), 127.1 (CH), 50.7 (CH₂), 46.8 (CH₂), 30.0 (CH₂), 29.0 (CH), 27.4 (CH₂), 26.0 (CH₂), 23.9 (CH₂), 21.0 (CH₂), 20.3 (CH₂), 15.8 (CH₃); m/z 259 (M^{*+}, 35%), 140 (35), 120 (100), 91 (100).

 (\pm) -1-Benzyl-3-methylazacyclodecane (8). Lithium aluminum hydride (690 µl of a 1.0 M solution in THF, 0.69 mmol) was added dropwise to a magnetically stirred solution of the lactam 7 (89 mg, 0.34 mmol) in THF (5 ml) maintained at 18 °C under a nitrogen atmosphere. After the addition was complete stirring was continued for a further 16 h, then the reaction mixture was quenched with ethyl acetate (3 ml) and then diluted with water (40 ml) and CHCl₃ (40 ml). The separated aqueous phase was extracted with CHCl₃ (3 × 40 ml) and the combined organic extracts dried (MgSO₄), filtered and concentrated under reduced pressure to give a light yellow oil. Subjection of this material to flash chromatography (silica gel, 1:5 v/v ethyl acetate-hexane elution) and concentration of the appropriate fractions $(R_f, 0.5)$ gave the title amine 8 (84 mg, 99%) as a clear colourless oil. HRMS: m/z 245.2140 (M⁺); $C_{17}H_{27}N$ requires 245.2144; ν_{max} 2922, 1477, 1451, 734, 697 cm⁻¹; δ_{H} 7.40–7.20 (complex m, 5H), 3.84 (d, J 13.5 Hz, 1H), 3.10 (d, J 13.5 Hz, 1H), 2.77 (m, 1H), 2.40 (t, J 12.1 Hz, 1H), 2.20 (dt, J 12.1 and 5.0 Hz, 1H), 2.10 (dd, J 12.1 and 5.0 Hz, 1H), 2.02-1.56 (complex m, 6H), 1.54-1.30 (complex m, 7H), 0.80 (d, J 6.0 Hz, 3H); $\delta_{\rm C}$ 139.9 (C), 129.2 (CH), 128.0 (CH), 126.5 (CH), 60.1(5) (CH₂), 60.0(8) (CH₂), 52.7 (CH₂), 31.8 (CH₂), 29.5 (CH), 26.1 (CH₂), 25.6 (CH₂), 25.1 (CH₂), 24.3 (CH₂), 22.5 (CH₂), 19.4 (CH₃); m/z 245 (M⁺, 35%), 244 [$(M - H)^+$, 30], 154 [$(M - C_7H_7)^+$, 72], 120 (77), 91 (100).

 (\pm) -3-(3'-Methylazacyclodecan-1'-yl)propionitrile (10). Palladium hydroxide (120 mg of 20 wt% on carbon) was added to a solution of amine 8 (120 mg, 0.49 mmol) in CH₂Cl₂ (10 ml) maintained under an atmosphere of hydrogen (1 atm) and the resulting suspension stirred at 18 °C for 24 h. The reaction mixture was then filtered through a pad of CeliteTM and the residue washed with a solution of CH2Cl2 [pretreated with aqueous NH_4OH then dried (Na_2SO_4)] (3 × 30 ml). The filtrate was concentrated under reduced pressure to afford (\pm) -3-methylazecane (9) as a dark green oil. This material was immediately dissolved in acrylonitrile (10 ml) containing acetic acid (50 µl) and the resulting mixture heated at reflux for 16 h. The cooled reaction mixture was concentrated under a stream of nitrogen and the residue subjected to flash chromatography (silica gel, 1:19 v/v ethyl acetate-hexane elution). Concentration of the appropriate fractions (R_f 0.4) afforded nitrile 10 (37) mg, 36% from 8) as a pale yellow oil. HRMS: m/z 208.1938 (M^{·+}); $C_{13}H_{24}N_2$ requires 208.1939; v_{max} 2924, 2850, 2804, 2246, 1457, 1377, 1124, 1079 cm⁻¹; δ_H 2.89 (dt, *J* 13.2 and 7.6 Hz, 1H), 2.78-2.59 (complex m, 2H), 2.46 (m, 2H), 2.40-2.24 (complex m, 3H), 1.96-1.30 (complex m, 13H), 0.82 (d, J 6.7 Hz, 3H); $\delta_{\rm C}$ 119.4 (C), 59.9 (CH₂), 52.5 (CH₂), 50.2 (CH₂), 31.8 (CH₂), 30.0 (CH), 26.6 (CH₂), 25.8 (CH₂), 24.4 (CH₂), 24.2 (CH₂), 22.0 (CH₂), 19.3 (CH₃), 14.7 (CH₂); m/z 208 (M⁺⁺, 18%), 168 [$(M - C_2H_2N)^+$, 100], 149 (30), 126 (30), 97 (49), 83

(±)-3-(3'-Methylazacyclodecan-1'-yl)propylamine Sodium borohydride (38 mg, 1.00 mmol) was added in portions to a magnetically stirred solution of nitrile 10 (8 mg, 0.04 mmol) and cobalt(II) chloride hexahydrate (23 mg, 0.10 mmol) in methanol (2 ml) maintained at 18 °C under a nitrogen atmosphere. After 2 h HCl (5 ml of a 2 M aq. solution) was added and the resultant mixture concentrated under reduced pressure. The residue thus obtained was then dissolved in NH₄OH (20 ml of a concentrated aq. solution) and CHCl₃ (20 ml) and the separated aqueous phase extracted with CHCl₃ $(3 \times 20 \text{ ml})$. The combined organic extracts were dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford a tan oil. Subjection of this material to flash chromatography (silica gel, 3: 2 v/v methanol-chloroform elution) and concentration of the appropriate fractions ($R_{\rm f}$ 0.4) afforded the title amine 1⁷ (6 mg, 90%) as a pale yellow oil. HRMS: m/z 212.2253 (M⁺); C₁₃H₂₈N₂ requires 212.2252; $\nu_{\rm max}$ 2947, 2923, 2867, 2849, 2792, 1578, 1473, 1455 cm⁻¹; $\delta_{\rm H}$ 2.90 (br s, 2H), 2.69 (ddd, J 12.8, 10.6 and 4.0 Hz, 1H), 2.58 (br s 2H), 2.52–2.44 (complex m, 1H), 2.32 (dd, J 13.0 and 11.5 Hz, 1H), 2.15 (dt, J 13.0 and 4.5 Hz, 1H), 2.10-2.05 (complex m, 2H), 1.90-1.70 (complex m, 3H), 1.68-1.26 (complex m, 12 H), 0.78 (d, J 7.0 Hz, 3H); $\delta_{\rm C}$ see Table 1; m/z 212 (M⁺⁺, 7%), 182 [(M - CH₂NH₂)⁺, 13], 168 [(M - C₂H₄NH₂)⁺, 100], 154 (23), 126 (31).

Crystal data and refinement details for lactam 7

Data collection and reduction. Crystallographic data for the title compound are given in Table 2. Intensity data were collected (from a plate only 0.017 mm thick) on a Nonius Kappa CCD diffractometer using graphite monochromated Mo-Kα radiation ($\lambda = 0.71073$ A) to a maximum 2θ value of 55°. Data were extracted from diffraction images *via* the DENZO¹⁸ package and an analytical absorption correction was applied.

Table 2 Crystallographic data for lactam 7

Formula	$C_{17}H_{25}NO$	
FW	259.393	
Crystal system	Monoclinic	
Space group	$P2_1/a$	
a/A	8.6690(2)	
$b/ ext{\AA}$	15.7588(3)	
c/Å	11.4462(2)	
β/° ,	102.0894(11)	
U/\mathring{A}^3	1529.02(5)	
$\mathbf{Z}^{'}$	4	
T/K	$200(\pm 1)$	
μ/mm^{-1}	0.069	
No. of reflections	26911	
Unique reflections	$3513 \ (R_{\rm int} = 0.072)$	
R	0.0372	
R_w	0.0395	

Structure solution and refinement. The structure was solved by direct methods¹⁹ and expanded using Fourier techniques.²⁰ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically

determined positions riding on the carbon of attachment. The final cycle of full-matrix least squares refinement²⁰ was based on 1892 observed reflections $[I > 3.0\sigma(I)]$ and 173 variable parameters.

CCDC reference number 170402. See http://www.rsc.org/suppdata/nj/b1/b105045c/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank the Institute of Advanced Studies for financial support and the Australian Research Council for providing an APA(I) (to D. J. W.). Professor Wolfgang Steglich (Ludwig-Maximilians-Universität, München) is thanked for providing a preprint of his paper on the synthesis of compounds (+)-and (-)-1.

Notes and references

- G. Koren-Goldshlager, Y. Kashman and M. Schleyer, J. Nat. Prod., 1998, 61, 282.
- Y. Kashman, G. Koren-Goldshlager, M. D. Garcia Gravalos and M. Schleyer, *Tetrahedron Lett.*, 1999, 40, 997.
- 3 Y. Kashman, G. Koren-Goldshlager and M. D. Garcia Gravalos, World Pat. WO 00/20411, 2000; Y. Kashman, G. Koren-Goldshlager and M. D. Garcia Gravalos, Chem. Abstr., 2000, 132, 260678.
- 4 M. G. Banwell, B. L. Flynn and D. C. R. Hockless, *Chem. Commun.*, 1997, 2259.
- 5 M. G. Banwell, B. L. Flynn, E. Hamel and D. C. R. Hockless, Chem. Commun., 1997, 207.
- 6 M. G. Banwell, A. M. Bray, A. C. Willis and D. J. Wong, New J. Chem., 1999, 23, 687.
- 7 Heinrich and Steglich (M. R. Heinrich and W. Steglich, Tetrahedron Lett., 2001, 42, 3287) have recently achieved, via a related ring closing metathesis strategy, total syntheses of both enantiomers of compound 1. These workers concluded that this compound differs in its NMR data and optical rotation from haliclorensin.
- 8 A. J. Phillips and A. D. Abell, Aldrichimica Acta, 1999, 32, 75.
- See, for example: (a) S. F. Martin, Y. Liao, Y. Wong and T. Rein, Tetrahedron Lett., 1994, 35, 691; (b) J. D. Winkler, J. E. Stelmach and J. Axten, Tetrahedron Lett., 1996, 37, 4317; (c) U. K. Pandit, B. C. Borere and H. Bieräugel, Pure Appl. Chem., 1996, 68, 659; (d) E. Magnier and Y. Langlois, Tetrahedron Lett., 1998, 39, 837; (e) W. P. D. Golding and L. Weiler, Org. Lett., 1999, 1, 1471.
- A. Falchi, G. Giacomelli, A. Porcheddu and M. Taddei, Synlett, 2000, 275.
- W. P. D. Goldring, A. S. Hodder and L. Weiler, Tetrahedron Lett., 1998, 39, 4955.
- 12 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
- 13 T. Satoh, S. Suzuki, Y. Suzuki, Y. Miyaji and Z. Imai, Tetrahedron Lett., 1969, 4555.
- 14 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
- D. D. Perrin and W. L. F. Amarego, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 3rd edn., 1988.
- 16 O. Kitagawa, T. Hanano, T. Hirata, T. Inoue and T. Taguchi, Tetrahedron Lett., 1992, 33, 1299.
- E. Lorthiois, I. Marek and J. F. Normant, J. Org. Chem., 1998, 63, 566.
- 18 A. Altomare, M. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1993, **26**, 343.
- Z. Otwinowski and W. Minor, in *Methods in Enzymology*, ed. C.
 W. Carter, Jr. and R. M. Sweet, Academic Press, London, 1997, vol. 276, pp. 307–326.
- 20 D. J. Watkin, C. K. Prout, J. R. Carruthers and P. W. Betteridge, Crystals, Issue 10, Chemical Crystallography Laboratory, Oxford, UK, 2000.